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ABSTRACT
Modern cloud has turned data services into easily accessible com-
modities. With just a few clicks, users are now able to access a
catalog of data processing systems for a wide range of tasks. How-
ever, the cloud brings in both complexity and opportunity. While
cloud users can quickly start an application by using various data
services, it can be difficult to configure and optimize these services
to gain the most value from them. For cloud providers, managing
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every aspect of an ever-increasing set of data services, while meet-
ing customer SLAs and minimizing operational cost is becoming
more challenging. Cloud technology enables the collection of sig-
nificant amounts of workload traces and system telemetry. With
the progress in data science (DS) and machine learning (ML), it is
feasible and desirable to utilize a data-driven, ML-based approach to
automate various aspects of data services, resulting in the creation
of autonomous data services. This paper presents our perspectives
and insights on creating autonomous data services on Azure. It also
covers the future endeavors we plan to undertake and unresolved
issues that still need attention.

CCS CONCEPTS
• Information systems → Autonomous database administra-
tion; • Computer systems organization → Cloud computing.

KEYWORDS
cloud, data service, autonomous data service, self-driving data ser-
vice, artificial intelligence (AI), machine learning (ML), data science
(DS), ML for system, cloud infrastructure, query engine
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1 INTRODUCTION
Modern cloud has made access to various data processing systems
easier than ever. Today, Azure—Microsoft’s public cloud offering—
provides a large range of data services to customers, including
SQL databases (e.g. SQL Server, PostgreSQL, and MySQL), NoSQL
databases (e.g. CosmosDB), analytics (e.g. Synapse SQL and Synapse
Spark), big data (e.g. Apache Kafka and Apache Storm), and BI (e.g.
PowerBI Analysis Service). While cloud providers benefit from the
economy of scale, migration to cloud also brings with it complexity.
As the number and the complexity of data services continue to
grow, cloud providers are facing increasing difficulties in managing
all aspects of a service, such as resource provisioning, scheduling,
query optimization, query execution and service tuning, while still
satisfying customer SLAs and reducing operational expenses. For
cloud users, on the other hand, it is non-trivial to extract the maxi-
mum benefit from these data services, with each service exposing
many configurations and performance knobs to tune. The recent
trend of serverless computing seeks to relieve users from the burden
of choice. However, this product line simply transfers the problem
from cloud users back to cloud providers. Automating data services
thus is an integral part of the cloud to operate at scale.

While the cloud brings with it complexity, it presents massive
opportunities. We have never before had access to such detailed

workload traces and system telemetries, collected across millions of
users and applications. More instrumentation is continuously added
to the cloud for better tracing and monitoring. The combination of
the recent advances in data science (DS) and machine learning (ML),
sophisticated telemetry, and shortage of data experts make now an
ideal time for the development and adoption of autonomous data
services. Prior research on self-adaptive [17], self-tuning [7], and
self-managing [37] databases has been ongoing for decades, but it
is only with the advent of cloud technology that the practicality
of autonomous data services has emerged. Oracle announced the
“World’s First Self-Driving Database" in 2017 [12] suggesting that
ML will replace DBA, followed by many efforts on autonomous
databases from industry and academia [38, 50]. Furthermore, there
is a wealth of research focused on utilizing ML to improve or substi-
tute various components of database engines, such as the cardinality
estimator, cost model, query planner, and indexer [23–25]. We are
witnessing an explosion of DS/ML-for-Systems innovations applied
in the area of autonomous databases.

The vision described in the paper is the distillation of multiple re-
search efforts led by applied researchers and data scientists from the
Gray Systems Lab (GSL) [32], in close collaboration with engineers
from various departments within Azure Data. The set of research
initiatives seek to enhance and automate different facets of Azure
Data services, which have yielded significant COGS (cost of goods
sold) saving for Azure. In this paper, we present our perspectives
on the development of autonomous cloud data services, including
the challenges involved, the progress we have made, the lessons
we have learned, the future directions we are pursuing, and the
outstanding questions that require further investigation.

2 OUR VIEWPOINTS
We first present our viewpoints on building autonomous data ser-
vices in the cloud and explain the rationals behind them.

Viewpoint 1: The economic scale that has driven the adoption of
cloud technology has also necessitated the development of autonomous
data services. However, we contend that true autonomous data services
can only be achieved in the cloud, meaning that the cloud is a necessary
precondition for the attainment of autonomy in data services.

Gaining knowledge from past experiences, which may span mul-
tiple users and applications, is a critical step towards achieving
autonomy for data services. The cloud platform provides extensive
visibility into a vast array of systemmetrics and workloads from nu-
merous users and applications over time. Due to its expansive range
of services and customer base, the cloud amortize the cost of ad-
vanced quality-of-service (QoS) features, making it more financially
viable to invest in ML-based solutions. Although a 1% improvement
in on-premise systems for an individual customer may seem in-
significant, when applied across millions of cloud users, it can have
a substantial impact. Additionally, as customer workloads continue
to evolve, the learning process must adapt accordingly, which the
cloud facilitates through the rapid deployment of updates, often
without requiring end-user involvement.

Viewpoint 2: Autonomy spans all layers of data services: cloud
infrastructure layer, query engine layer, and service layer.
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Developing an autonomous data service on the cloud requires
leveraging ML to improve or replace more than just the work of
DBAs and individual engine components. To illustrate, let us con-
sider the life cycle of a query on a serverless big data service. These
services offer a range of adjustable knobs that can impact system
performance. For example, Spark requires the user to specify the
number of executors and resources (cores and memory) allocated
to them. Since this is a serverless service, all such decisions must
be made automatically at the service layer. Prior to running the
query, the service must be operational. If this is the first time the
customer has used the service, then VM or container resources
must be provisioned at the cloud infrastructure layer. This raises a
number of questions, such as which VM or container SKU to select,
what the software configuration should be, and whether proactive
resource provisioning is necessary to meet SLA for the customer.
If so, what SKUs should be proactively provisioned? Once the ser-
vice is running, the query must be optimized using an accurate
cardinality, the correct cost model, and a reliable query planner.
The query is then executed efficiently, potentially utilizing indexes
and materialized views recommended based on the workloads. It
is evident that all layers of the cloud stack, including the cloud
infrastructure layer, query engine layer, and service layer, as well
as the interactions among them, must be taken into consideration
when creating autonomous data services. This level of complexity
can be daunting for many institutions.

Viewpoint 3: The objectives of autonomous data services are: im-
proving ease of use, optimizing performance, reducing costs, and
maintaining data privacy.

Autonomy is not the ultimate goal of cloud services, but rather a
means to achieving simpler, faster, and more cost-effective services
for users, while also prioritizing data privacy. Simplicity or ease
of use is an important aspect, whereby users should not have to
worry about resource allocation, query optimization, or excessive
configuration and tuning decisions to use a data service. Achieving
optimized performance is a shared goal among cloud users and
providers. To meet this goal, the cloud infrastructure layer needs
to offer fast and intelligent resource provisioning and scheduling,
queries must be optimized and executed efficiently, and services
should be appropriately tuned. Cost savings benefit both users
and providers. Interestingly, as we will show later, many times
performance and cost saving can be achieved simultaneously, but
sometimes they are at odds with each other and requires a trade-
off between these two goals. Finally, preserving privacy must be a
fundamental requirement when pursuing the other three objectives.

3 THE VANTAGE POINT
As an applied research organization under Azure Data, GSL is
situated at the intersection of research and product development.
Our viewpoints on building autonomous cloud data services are
therefore shaped by the rich research and our first-hand experience
working with various product groups in Azure Data.

Research in Autonomous Data Services. Our perspectives
and progress in creating autonomous data services are built upon
a strong foundation of research from the academic community. In
the interest of space, we focus on the major trends and provide
examples of influential works, although a comprehensive survey

of research in this area is beyond the scope of this discussion. As
pointed out by [39], the work on autonomous data systems dates
back more than four decades, with the development of self-adaptive
databases [17]. In the early 2000s, projects such as Microsoft’s
AutoAdmin [4] and IBM’s DB2 design advisor [54] marked the era
of self-tuning databases [7]. Oracle subsequently introduced the
self-managing database [37]. While these earlier works aimed to
alleviate various administrative tasks for DBAs, such as memory
allocation, index recommendations, and materialized views, they
did not utilize DS&ML techniques. However, the cloud and the
advancements in DS&ML technologies have accelerated progress
towards autonomous data services. In 2017, Oracle announced the
“World’s First Self-Driving Database” [12]. In academia, several
efforts have focused on autonomous or self-driving databases [38,
50], which aim to automatically tune database configurations or
optimize databases for predicted future workloads. In a related line
of research, many studies have applied ML to improve database
engine components, often referred to as learned components. These
include learned indexes [24], learned cardinality estimation [23],
learned query optimizer [25], and learned checkpoint [52]. All of
these efforts occur either inside the database engine or on top of the
engine in the service layer. The efforts in optimized infrastructure
support [10, 11] for cloud data services are fewer in comparison.

First-Hand Product Experience. Over the years, we have
worked on a large number of ML-for-Systems projects, and suc-
cessfully delivered many new or improved features in making the
corresponding Azure data services more autonomous. Horizontally,
we have worked on Cosmos [42] (an internal cloud data service
in Microsoft), Azure SQL Database [30], Azure Synapse SQL [31],
Synapse Spark [26], HDInsight [28], etc. Vertically, our work has
touched all three layers of data services. We have proposed novel
techniques as well as adapted existing state-of-the-art research
ideas to address practical concerns such as explainability, debugga-
bility, and cost management. In Section 4, we will showcase some
of these projects.

4 CHALLENGES AND PROGRESS
In this section, we discuss the challenges in automating each layer
of the cloud stack and report on the progress we have achieved.

4.1 Cloud Infrastructure Layer
The cloud infrastructure manages all hardware and software re-
sources for the life cycle of data services. Significant technical and
research efforts have been made to enhance it, including resource
provisioning [16], job scheduling [3, 15], container imaging [5], and
autoscaling [13, 48]. However, these components heavily depend on
the manual adjustments by experts in the field, with fixed parame-
ters dispersed throughout the code base in configuration files. With
the emergence of advanced analytical tools and abundant telemetry
data, new opportunities for automation arises. Our solutions in
this layer were built based on our findings on the predictability of
system behaviors and user behaviors.

Modeling system behaviors based on domain knowledge
and system metrics. Training models for autonomous data ser-
vices requires a substantial amount of data from various system
tunables. While existing observational data may suffice in scenarios
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Figure 1: Models to predict machine behavior [53]

with inherent volatility [53], additional data is often necessary. How-
ever, gathering such data through rounds of trials on the production
infrastructure is impractical due to potential service disruptions.
As a result, we must either devise ways to minimize the number
of experiment runs or gather system metrics and use ML to “emu-
late” system dynamics. In both cases, domain knowledge is crucial
to comprehend the causal links among different components and
establish trustworthy models of the complex system.

As an example, in [53], we employed multiple linear models
to predict machine behavior, such as CPU utilization versus task
execution time or the number of running containers (see Figure 1).
These models were then integrated into an optimizer to balance
workloads by tuning Cosmos scheduler configurations, such as the
maximum running containers for each SKU. Similar methods were
used to determine the hardware/software configuration, such as
RAM/SSD size and the mapping of logical drives to physical me-
dia, and to set power limits on Cosmos racks. For Azure Synapse
Spark [26], we developed a simulator to mimic the cluster initial-
ization process and derived the optimal policy for sending requests,
reducing its tail latency. As another example, by using ML to predict
the throughput and latency of benchmark workloads on VMs with
various kernel parameters, developed on MLOS [9], we refined the
parameters of the Azure VM that runs Redis workloads.

Modeling user behaviors for better trade-offs between
quality of service (QoS) and cost. Cloud operators face a contin-
uous challenge in managing resources, striking a balance between
QoS, such as low latency, and operational costs. To fulfill customer
SLAs, cloud operators often need to proactively provision resources,
which can lead to additional expenses. This interdependence is il-
lustrated by the Pareto curve in Figure 2. By utilizing ML, these
trade-offs can be measured, and the Pareto curve can be globally op-
timized. In [41], we demonstrated that 77% of Azure SQL Database
Serverless usage is predictable and used ML forecasts to pause/re-
sume databases proactively. Another instance is proactive cluster
provisioning based on expected user cluster creation demand to
reduce wait time for cluster initialization on Azure Synapse Spark,
optimizing both COGS and performance.

4.2 Query Engine Layer
Despite the significant amount of research conducted on utilizing
ML techniques to enhance or replace parts of the query engine [23–
25], there is still reluctance within the industry to apply these
advanced methods to actual production systems. This reluctance
can be attributed to several factors. Firstly, real production sys-
tems are often more intricate than the academic prototypes used

Cost

Latency

Optimized

Figure 2: Pareto curve depicting the trade-offs between the
QoS (x-axis) and the cost (y-axis)

in research papers. For instance, the start-of-the-art learned opti-
mizer, Bao [25], which provides rule hints to steer the optimizer
towards better plans, only takes into account 48 rule configura-
tions, whereas the SCOPE query engine [42] used in Cosmos has
256 rules in the query optimizer, which leads to 2256 rule configu-
rations that need to be considered. Secondly, while sophisticated
ML algorithms have demonstrated superior performance over cur-
rent engine components, production engineers prioritize the inter-
pretability and debuggability of the models, as every new feature
introduced may generate new incident tickets for on-call engineers
to resolve. Thirdly, workload patterns change over time due to data
or concept drift, and regression is a genuine concern. Finally, the
cost of training, especially for deep neural networks, becomes as
another obstacle to their adoption.

This subsection outlines our efforts to automate various aspects
of query engines in production environments and address the afore-
mentioned challenges. The fundamental principle underlying our
work is to learn from the past to improve the future. Our work
is based on the observation that in actual production workloads,
queries and jobs are often recurrent and similar. For instance,
in SCOPE, over 60% of jobs are recurring (involving periodic runs of
scripts with the same operations but different predicate values [51]),
and nearly 40% of daily jobs share common subexpressions with
at least one other job [22]. This highlights the potential benefits of
insights learned from the past workloads to improve the efficiency
of future workloads.

Workload Analysis. To automate query engines, we start from
workload analysis [20]. There are several pieces of information that
are crucial for learning: meta data, query logs, and run time statis-
tics (such as execution time and actual cardinality). However, these
data sources are frequently dispersed in different locations. Conse-
quently, our first step is to combine this information. To facilitate
various applications of the workload data, queries or subexpressions
of queries are categorized into templates based on their recurrence
and similarity, and the dependencies of queries/jobs (where the
output of one job serves as the input of another) in pipelines are
captured [20]. Furthermore, workloads evolve over time, and as
such, we also learn the evolving nature of the historical workloads
to forecast future workloads.

Query Optimization. The optimizer serves as the brain of a
query engine, and decades of research and development have been
invested in improving this component for any data engine on Azure.
Our guiding principle is to minimize changes to the existing
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optimizer and supplement it with learned components. Specif-
ically, we externalize the learned components and add simple ex-
tensions to the optimizer to leverage these external services. For
cardinality estimation, we utilize the templates generated by work-
load analysis and train per-template micromodels [49]. We reduce
the number of micromodels by retaining only those that would
actually improve performance. Consequently, the optimizer can
employ more precise cardinalities for queries or subexpressions
with corresponding models while reverting to the default cardinali-
ties for others. We adopt the same micromodel approach for learned
cost models [46] and introduce a meta ensemble model that cor-
rects and combines predictions from individual models to increase
coverage. To enhance optimizer plans using rule hints, we have
made notable progress in applying state-of-the-art research ideas
from Bao [25] to production settings. However, we had to make sig-
nificant adjustments for the production system, including limiting
steering to small incremental steps for better interpretability and
debuggability, minimizing pre-production experimentation costs
using a contextual bandit model, and guarding against regression
with a validation model [35, 51].

Query Execution. In query engines of big data services like
Cosmos and Spark, a job is compiled into a Direct Acyclic Graph
(DAG) of stages that are executed in parallel. In the case of Cosmos,
we have observed an increase in the job complexity over the years,
with some jobs containing thousands of stages [52]. During runtime,
these large jobs can lead to machine hotspots that run out of local
temporary storage space, longer restarting times in case of failures,
and suboptimal performance due to compounding errors from poor
optimizer estimates. In [52], we trained models to estimate the
execution time, output size, and start/end time of each stage taking
into account of the inter-stage dependency, then applied a linear
programming algorithm to introduce checkpoint “cut(s)” of the
query DAG. With this checkpoint optimizer, we were able to free
the temporary storage on hotspots by more than 70% and restart
failed jobs 68% faster on average with minimal impact on Cosmos
performance.

Computation Reuse.With the large portion of recurrent and
overlapping queries observed in real production workloads, there
is a great opportunity to reuse past computations for future queries.
CloudViews [21, 43] was developed to detect and reuse common
computations on Cosmos and Spark. It relies on a lightweight subex-
pression hash, called a signature, for scalable materialized view
selection and efficient view matching. Deployed on Cosmos, we
have observed 34% improvement on the accumulative job latency,
and 37% reduced total processing time [21]. We have worked on im-
provements of CloudViews on several fronts, including extending
the reuse from the syntactically equivalent subexpressions detected
by the signatures to semantically equivalent and contained subex-
pressions while still maintaining the efficiency and scalability of
the detection process, as well as enabling a query to partially take
advantage of a view with the remaining results computed on the
base tables.

Pipeline Optimization. Production workloads not only have
many recurrent queries, but also many recurrent query pipelines,
where queries are interconnected by their outputs and inputs. For
example, 70% of daily SCOPE jobs have inter-job dependencies.
We analyzed the interdependency to facilitate job scheduling [8]

and developed a pipeline optimizer to optimize these recurrent
pipelines [14], including collecting pipeline-aware statistics and
pushing common subexpressions across consumer jobs to their
producer job.

4.3 Service Layer
DS&ML solutions impact how customers engage with a system at
the service level. The primary goal of the autonomous cloud services
is to automate as many customer-facing decisions and options
as possible while also providing highly customizable solutions.
DS&ML tools allow for the automation of various decisions by
studying customer and application profiles. We can develop models
with different levels of granularity: 1) a global model that is broad
but may not be precise, 2) a segment model that groups similar
customers or applications and shares insights within the group,
and 3) an individual model for each customer or application that
requires sufficient data observations.

Individual models aremore accurate when there is enough
data. To automate the scheduling of backups for PostgreSQL and
MySQL servers, we used ML models to forecast user load for each
specific server [40]. The system identifies low load windows with
99% accuracy, and the solution has been deployed for tens of thou-
sands of PostgreSQL and MySQL servers across all Azure regions.

Segment models or global models are deployed jointly to
transfer learning across customers/applications. To automate
the SKU suggestion for migrating from on-premise SQL Server
to the cloud, we proposed a profiling model that compares new
customers to existing segments of Azure customers. This enables
new customers to benefit from the decisions made by customers
with similar characteristics. We achieved a recommendation accu-
racy of over 95% by combining the segment-wise knowledge with
a per-customer price-performance curve that offers a customized
rank of all SKU options [6]. Another example involves auto-tuning
configurations for Spark, built on top of the resource usage predic-
tor [45]. We use iterative tuning algorithms to replace the manual
process for customers. We start with a global model trained using
data from multiple benchmark queries. While the global model may
not be highly accurate, it serves as a reasonable starting point and is
fine-tuned for each application as more observational data becomes
available.

5 LESSONS LEARNED
Given our experience developing and integrating DS&ML solutions
at the cloud infrastructure, query engine and data service layers for
various cloud services across Microsoft (e.g., SCOPE [42], Synapse
DW [31] as well as Spark [26, 28]), common patterns arose across
our engagements. Here we list some key lessons that we believe un-
derlie our production successes and the speed at which we generate
value for our product partners.

Insight 1: Simplicity rules.

The common pattern across all our engagements is that simple
heuristics tend to overrule ML and simple ML models, like linear
models and tree-based models, tend to overrule complex deep learn-
ing models. This is particularly true for new engagements, with
teams that have yet to adopt ML within production. For example,
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in [40], for PostgreSQL or MySQL servers that follow a stable daily
or a weekly pattern, a simple heuristic that predicts the load of a
server based on that of the previous day was already sufficient to
generate 96% accuracy. There are many projects in which a linear
regression was most appropriate [45, 53]. Simplicity helps with:

Cost. While there is growing consensus on the positive impact
of ML in automating and optimizing cloud services, production
deployments have to evaluate trade-offs with the increase in COGS
to enable it. Consequently, algorithms are selected, not only by
performance, but also by other factors, like training and inference
cost, dependency on specialized hardware (GPU, FPGAs), etc..

Scalability. For production systems, we need the metrics to
seamlessly scale in training time, re-train frequency and data/pa-
rameter handling. Most sophisticated machine learning techniques
do not satisfy this fundamental requirement, e.g., reinforcement
learning requires substantial training data before outperforming
traditional approaches. Moreover, when inference is on the critical
path (which impacts the customer-experienced latency), latency
becomes crucial for the design of the infrastructure which prunes
the solutions space considerably.

Manageability. Manageability is important in two dimensions
— debuggability and upgrades/rollbacks. ML models are sometimes
notorious for their difficulty in debugging. In a production envi-
ronment, when encountering regression, a complex data lineage
across a multitude of systems and language is needed for a close
investigation from data ingestion to model (deployed) inference[34].
Debuggability needs to be well-supported with tracking/versioning
through MLOps [2] for continuous integration.

Explainability. For customer-facing solutions, the expectation
is that the reasoning of a choice made under the hood by any
algorithm has a succinct and ideally intuitive rationale. In this
sense, an explainable solution, which in turn translates to simplicity
such as [6], is very much preferable, while also improving the
manageability as mentioned before.

Insight 2: One size does not fit all.
One global (macro) model that functions reasonably well for all

scenarios can typically be traded off against several specific (micro)
models that are tailored for individual customers, as discussed
in Section 4.3. Identifying and crafting a single global model is
generally difficult, as data heterogeneity necessitates considerable
feature construction and model hyperparameter tuning for optimal
performance. Micro models, however, go against simplicity due to
the challenges in managing the large number of models. A happy
middle ground can be achieved by identifying natural ways to
stratify the data, and building micro models for each cluster as
done in the SKU recommendation framework [6] that recommends
right-sized Azure SQL SKU to migrate on-premise databases.

Insight 3: Feedback loop is indispensable.
It is universally accepted that all ML solutions undergo exten-

sive testing before being deployed into production, including back-
testing, flighting [53] or A/B testing (potentially with a smaller
group). The dynamic nature of cloud data services, however, ne-
cessitates ongoing improvement of even "well-tested" solutions in
order to maintain performance, which leads to requirements for

(1) a thorough monitoring system to spot potential changes in real-
time, continually assess, and initiate fine-tuning of the model, and
(2) a rollback mechanism that reacts fast and avoids regression.

6 FUTURE DIRECTIONS
In this section, we discuss some of the future directions that we are
currently pursuing while also highlighting the challenges.

Direction 1: Reuse, reuse and reuse!
Despite the differences between distinct data services on Azure,

they all face a set of similar issues. For example, at the infrastruc-
ture level, many services need efficient cluster provisioning and
auto-scaling. At the engine level, many require improvement in
cardinality estimation, query planning, and computation reuse. At
the service level, auto-tuning is highly sought after for many ser-
vices. Working on similar issues with multiple Azure data services
over time, we came to the realization that a common reusable
solution is highly desirable to efficiently leverage the similar
technologies and software artifacts among multiple services.

However, reality presents a lot of challenges to reusability. Dis-
tinct services collect different service-specific telemetries and work-
load traces, store them in different places (e.g., Kusto[27], SQL
server, etc.), and have different preferences on the infrastructure
for model deployment (e.g. AML[29], Synapse ML[33], etc.).

So, can we reach the holy grail of reusable ML solutions? Al-
though we don’t have a complete answer, we can perhaps try to
tackle this problem at different granularities of reusability.

Function Level Reuse. In the finest granularity, we can reuse
pieces of code modules that implement specific functions, e.g., time
series analysis of OS performance counter data. Our proposal is to
create aAlgorithmStore (analogous to a GitHub formodels), which is a
project gallery with predefined algorithm templates. The previously
developed algorithm can be discovered and adapted to address
new scenarios quickly. For this type of algorithm catalog, it is
required to have: (1) an easy search interface to discover similar
pre-existing solutions; (2) good API design to support extensibility
and customizations; (3) clean modularized functions; (4) significant
coverage of common use cases; (5) code quality to allow robust
reuse; and (6) better documentation.

Component Level Reuse. At the component level, the ques-
tion of reusability pertains to whether we can establish a shared
infrastructure that supports similar or related system components
across various data services. For example, can we develop a com-
mon infrastructure that facilitates auto-scaling for all services or
query optimization for all data engines? This task becomes increas-
ingly difficult due to the aforementioned differences among distinct
services. Nevertheless, we have made some strides on this front.
The Peregrine workload optimization platform [20] represents a
common infrastructure for a set of related engine problems, such as
cardinality estimation, cost models, and computation reuse. It has
been implemented for both Cosmos and Spark. Peregrine consists
of an engine-agnostic workload representation, workload catego-
rization based on patterns, and a workload feedback mechanism
that enables query engines to respond to workload feedback.

System-for-ML Support Level Reuse. At the highest level
of granularity, all ML-for-Systems projects require System-for-ML
support, from data ingestion, featurization, model training and
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tuning, model deployment, to model tracking. In GSL, we have a
large collection of System-for-ML projects towards building such
a common infrastructure. A summary and vision of our efforts in
this area is provided in [2].

Direction 2: Standardization.
Standardization is critical for developing reusable infrastructure

across data services. It begins with telemetry. In addition to struc-
turing the collected telemetry similarly across platforms and data
services through initiatives such as OpenTelemetry [36], we are
also exploring the use of semantic information from telemetry to
enhance reusability across platforms and services (e.g. CPU uti-
lization metrics on Windows and Linux VMs possess the same
meaning even though they may have different names). At the query
engine level, we require standardization for representing work-
loads and query plans. We have made some initial efforts on an
engine-agnostic workload representation as part of the Peregrine
workload optimization platform [20]. We are now exploring the use
of cross-language query plan specification, such as Substrait [47],
as a standard plan representation across our engines. To simplify
the reuse of models for deployment within a common infrastruc-
ture, we also adopt standard representations for ML models, such
as ONNX [1]. Furthermore, we package an ML model (along with
any additional required code and libraries) into a standard generic
container that can be efficiently reused across systems [44], making
it portable across all of our model-serving capabilities at Microsoft.

Direction 3: Optimization across components jointly.

In many projects, the primary focus is typically on optimizing a
single component of the entire system since it is owned by a spe-
cific product team. For example, VM provisioning is owned by the
cluster service team, while cardinality estimates are owned by the
query optimizer team, and so on. However, sequentially optimiz-
ing each individual component is unlikely to yield optimal overall
performance. Conversely, for a complex cloud service, especially
at scale, it is impractical to create a massive optimization problem
that simultaneously optimizes all components while accurately cap-
turing interactions across different components. Ongoing efforts
continue to jointly optimize a selection of components and syn-
chronize the deployment of changes so that the observational data
reflects the latest deployed configuration. This approach enables us
to focus on optimizing related components that work together in a
coordinated manner. By improving the joint optimization of these
components, we can improve the overall system performance.

Direction 4: Responsible AI (RAI)
ML cannot be applied without risks [19], e.g., over-indexing on

a particular customer or workload, and bias is an inherent problem
that we continually encounter. We introduce guardrails to protect
customers from expensive solutions and from performance regres-
sions, and we regularly check that our ML-driven decisions serve all
customers fairly. We have a responsibility to ensure that customers,
big or small, do not get marginalized from autonomous decisions.

At Microsoft, we are operationalizing the Responsible AI (RAI)
at scale to protect privacy and security, improve fairness, inclusive-
ness, reliability, safety, transparency, and accountability. For the
ML-related projects, we perform a comprehensive RAI assessment

which is for now a manual and prolonged process by domain ex-
perts. Several automation tools were developed (e.g., [18]), however,
ad-hoc solutions are still required for many cases.

7 CONCLUSION AND CALL TO ACTION
We are living in fascinating and rapidly evolving times where tech-
nology is advancing at a breakneck pace. Cloud and AI are among
the most transformative technologies of our era. The intersection
of these two revolutionary technologies can be witnessed in the
progress made towards autonomous data services on cloud. In this
paper, we showcased some of our progress in automating data
services on Azure. However, challenges remain to be overcome
as highlighted in the previous section. We believe that the data-
base community has a vital role to play in shaping the future of
cloud data services. We welcome other researchers to join us in this
exciting journey.

ACKNOWLEDGEMENTS
We thank past team members, interns, and MAIDAP collaborators
for their contribution to our progress.

REFERENCES
[1] 2017. Open Neural Network Exchange (ONNX). https://onnx.ai/.
[2] Ashvin Agrawal, Rony Chatterjee, Carlo Curino, Avrilia Floratou, Neha Godwal,

Matteo Interlandi, Alekh Jindal, Konstantinos Karanasos, Subru Krishnan, Brian
Kroth, Jyoti Leeka, Kwanghyun Park, Hiren Patel, Olga Poppe, Fotis Psallidas,
Raghu Ramakrishnan, Abhishek Roy, Karla Saur, Rathijit Sen, Markus Weimer,
Travis Wright, and Yiwen Zhu. 2020. Cloudy with high chance of DBMS: a
10-year prediction for Enterprise-Grade ML. In CIDR.

[3] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian,
Ming Wu, and Lidong Zhou. 2014. Apollo: Scalable and Coordinated Scheduling
for {Cloud-Scale} Computing. In OSDI. 285–300.

[4] Nicolas Bruno, Surajit Chaudhuri, Arnd Christian König, Vivek R. Narasayya,
Ravishankar Ramamurthy, and Manoj Syamala. 2011. AutoAdmin Project at
Microsoft Research: Lessons Learned. IEEE Data Eng. Bull. 34, 4 (2011), 12–19.

[5] cachelot.io. [n.d.]. Memcached Performance Tuning. https://cachelot.io/blog/
2015/04/20/Speed-up-your-application-by-fine-tuning-Memcached.html.

[6] Joyce Cahoon, Wenjing Wang, Yiwen Zhu, Katherine Lin, Sean Liu, Ray-
mond Truong, Neetu Singh, Chengcheng Wan, Alexandra M Ciortea, Sreraman
Narasimhan, and Subru Krishnan. 2022. Doppler: Automated SKU Recommenda-
tion in Migrating SQL Workloads to the Cloud. PVLDB 15, 12 (2022).

[7] Surajit Chaudhuri and Vivek Narasayya. 2007. Self-Tuning Database Systems: A
Decade of Progress. In VLDB ’07. 3–14.

[8] Andrew Chung, Subru Krishnan, Konstantinos Karanasos, Carlo Curino, and
Gregory R. Ganger. 2020. Unearthing inter-job dependencies for better cluster
scheduling. In 14th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 20). USENIX Association, 1205–1223. https://www.usenix.org/
conference/osdi20/presentation/chung

[9] Carlo Curino, Neha Godwal, Brian Kroth, Sergiy Kuryata, Greg Lapinski, Siqi
Liu, Slava Oks, Olga Poppe, Adam Smiechowski, Ed Thayer, et al. 2020. MLOS:
An infrastructure for automated software performance engineering. In DEEM.
1–5.

[10] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2013. ElasTraS: An Elastic,
Scalable, and Self-Managing Transactional Database for the Cloud. TODS 38, 1,
Article 5 (apr 2013), 45 pages.

[11] Sudipto Das, Feng Li, Vivek R. Narasayya, and Arnd Christian König. 2016.
Automated Demand-Driven Resource Scaling in Relational Database-as-a-Service.
In SIGMOD. 1923–1934.

[12] Edgar Haren. 2017. Oracle Revolutionizes Cloud with the World’s First Self-
Driving Database. https://blogs.oracle.com/database/post/oracle-revolutionizes-
cloud-with-the-worlds-first-self-driving-database.

[13] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram Rao, and Karthik Ra-
masamy. 2017. Dhalion: self-regulating stream processing in heron. PVLDB 10,
12 (2017), 1825–1836.

[14] Sunny Gakhar, Joyce Cahoon, Wangchao Le, Xiangnan Li, Kaushik Ravichandran,
Hiren Patel, Marc Friedman, Brandon Haynes, Shi Qiao, Alekh Jindal, and Jyoti
Leeka. 2022. Pipemizer: An Optimizer for Analytics Data Pipelines. PVLDB
(2022).

223

https://onnx.ai/
https://cachelot.io/blog/2015/04/20/Speed-up-your-application-by-fine-tuning-Memcached.html
https://cachelot.io/blog/2015/04/20/Speed-up-your-application-by-fine-tuning-Memcached.html
https://www.usenix.org/conference/osdi20/presentation/chung
https://www.usenix.org/conference/osdi20/presentation/chung
https://blogs.oracle.com/database/post/oracle-revolutionizes-cloud-with-the-worlds-first-self-driving-database
https://blogs.oracle.com/database/post/oracle-revolutionizes-cloud-with-the-worlds-first-self-driving-database


SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA Yiwen Zhu et al.

[15] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Janardhan
Kulkarni. 2016. {GRAPHENE}: Packing and {Dependency-Aware} Scheduling
for {Data-Parallel} Clusters. In OSDI. 81–97.

[16] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E Greeff, David
Dion, Star Dorminey, Shailesh Joshi, Yang Chen, Mark Russinovich, et al. 2020.
Protean:{VM} allocation service at scale. In OSDI. 845–861.

[17] Michael Hammer and Arvola Chan. 1976. Index Selection in a Self-Adaptive Data
Base Management System. In SIGMOD. 1–8.

[18] Kenneth Holstein, Jennifer Wortman Vaughan, Hal Daumé III, Miro Dudik, and
Hanna Wallach. 2019. Improving fairness in machine learning systems: What do
industry practitioners need?. In CHI. 1–16.

[19] Alekh Jindal and Jyoti Leeka. 2022. Query Optimizer as a Service: An Idea Whose
Time Has Come! SIGMOD Record (2022).

[20] Alekh Jindal, Hiren Patel, Abhishek Roy, Shi Qiao, Zhicheng Yin, Rathijit Sen,
and Subru Krishnan. 2019. Peregrine: Workload Optimization for Cloud Query
Engines. In SoCC. 416–427.

[21] Alekh Jindal, Shi Qiao, Hiren Patel, Abhishek Roy, Jyoti Leeka, and Brandon
Haynes. 2021. Production Experiences from Computation Reuse at Microsoft.. In
EDBT. 623–634.

[22] Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay Bag, Marc
Friedman, Yifung Lin, Konstantinos Karanasos, and Sriram Rao. 2018. Computa-
tion Reuse in Analytics Job Service at Microsoft. In SIGMOD. 191–203.

[23] Kyoungmin Kim, Jisung Jung, In Seo, Wook-Shin Han, Kangwoo Choi, and
Jaehyok Chong. 2022. Learned Cardinality Estimation: An In-Depth Study. In
SIGMOD. 1214–1227.

[24] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In SIGMOD, Gautam Das, Christopher M.
Jermaine, and Philip A. Bernstein (Eds.). 489–504.

[25] Ryan C. Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. PVLDB 12, 11 (2019), 1705–1718.

[26] Microsoft. [n.d.]. Apache Spark in Azure Synapse Analytics. https://docs.
microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-overview.

[27] Microsoft. [n.d.]. Azure Data Explorer. https://docs.microsoft.com/en-us/azure/
data-explorer/.

[28] Microsoft. [n.d.]. Azure HDInsight. https://azure.microsoft.com/en-us/services/
hdinsight/.

[29] Microsoft. [n.d.]. Azure Machine Learning. https://azure.microsoft.com/en-
us/services/machine-learning/.

[30] Microsoft. [n.d.]. Azure SQL Database. https://azure.microsoft.com/en-us/
products/azure-sql/database.

[31] Microsoft. [n.d.]. Azure Synapse SQL architecture. https://docs.microsoft.com/en-
us/azure/synapse-analytics/sql/overview-architecture.

[32] Microsoft. [n.d.]. Gray Systems Lab. https://www.microsoft.com/en-us/research/
group/gray-systems-lab/.

[33] Microsoft. [n.d.]. SynapseML. https://microsoft.github.io/SynapseML/.
[34] Mohammad Hossein Namaki, Avrilia Floratou, Fotios Psallidas, Subru Krishnan,

Ashvin Agrawal, Yinghui Wu, Yiwen Zhu, and Markus Weimer. 2020. Vamsa:
Automated Provenance Tracking in Data Science Scripts. In KDD. 1542–1551.
https://doi.org/10.1145/3394486.3403205

[35] Parimarjan Negi, Matteo Interlandi, Ryan Marcus, Mohammad Alizadeh, Tim
Kraska, Marc Friedman, and Alekh Jindal. 2021. Steering Query Optimizers: A
Practical Take on Big Data Workloads. In SIGMOD. 2557–2569.

[36] OpenTelemetry. [n.d.]. OpenTelemetry. https://substrait.io/.
[37] Oracle. 2006. Oracle Database 10g Release 2: The Self-Managing Database. Techni-

cal Report. Oracle.
[38] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,

Prashanth Menon, Todd C. Mowry, Matthew Perron, Ian Quah, Siddharth San-
turkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun Wu,

Ran Xian, and Tieying Zhang. 2017. Self-Driving Database Management Systems.
In CIDR.

[39] Andrew Pavlo, Matthew Butrovich, Lin Ma, Prashanth Menon, Wan Shen Lim,
Dana Van Aken, andWilliam Zhang. 2021. Make Your Database System Dream of
Electric Sheep: Towards Self-Driving Operation. PVLDB 14, 12 (2021), 3211–3221.

[40] Olga Poppe, Tayo Amuneke, Dalitso Banda, Aritra De, Ari Green, Manon Kno-
ertzer, Ehi Nosakhare, Karthik Rajendran, Deepak Shankargouda, Meina Wang,
Alan Au, Carlo Curino, Qun Guo, Alekh Jindal, Ajay Kalhan, Morgan Oslake, So-
nia Parchani, Vijay Ramani, Raj Sellappan, Saikat Sen, Sheetal Shrotri, Soundarara-
jan Srinivasan, Ping Xia, Shize Xu, Alicia Yang, and Yiwen Zhu. 2020. Seagull:
An Infrastructure for Load Prediction and Optimized Resource Allocation. In
PVLDB. VLDB Endowment, 154–162.

[41] Olga Poppe, Qun Guo, Willis Lang, Pankaj Arora, Morgan Oslake, Shize Xu, and
Ajay Kalhan. 2022. Moneyball: proactive auto-scaling in Microsoft Azure SQL
database serverless. PVLDB 15, 6 (2022), 1279–1287.

[42] Conor Power, Hiren Patel, Alekh Jindal, Jyoti Leeka, Bob Jenkins, Michael Rys,
Ed Triou, Dexin Zhu, Lucky Katahanas, Chakrapani Bhat Talapady, Joshua Rowe,
Fan Zhang, Rich Draves, Marc Friedman, Ivan Santa Maria Filho, and Amrish
Kumar. 2021. The Cosmos Big Data Platform at Microsoft: Over a Decade of
Progress and a Decade to Look Forward. PVLDB 14, 12 (2021).

[43] Abhishek Roy, Alekh Jindal, Priyanka Gomatam, Xiating Ouyang, Ashit Gosalia,
Nishkam Ravi, Swinky Mann, and Prakhar Jain. 2021. SparkCruise: Workload
Optimization in Managed Spark Clusters at Microsoft. PVLDB 14, 12 (2021),
3122–3134.

[44] Karla Saur, Tara Mirmira, Konstantinos Karanasos, and Jesús Camacho-Rodríguez.
2022. Containerized Execution of UDFs: An Experimental Evaluation. PVLDB 15,
11 (2022), 3158 – 3171. https://doi.org/doi:10.14778/3551793.3551860

[45] Rathijit Sen, Alekh Jindal, Hiren Patel, and Shi Qiao. 2020. AutoToken: Predicting
peak parallelism for Big Data analytics at Microsoft. PVLDB 13, 12 (2020), 3326–
3339.

[46] Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and Wangchao Le. 2020.
Cost Models for Big Data Query Processing: Learning, Retrofitting, and Our
Findings. In SIGMOD. 99–113.

[47] Substrait. [n.d.]. Substrait: Cross-Language Serialization for Relational Algebra.
https://substrait.io/.

[48] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E Haque, Zhijing Gene Qin,
Steven Hand, Mor Harchol-Balter, and John Wilkes. 2020. Borg: the next genera-
tion. In EuroSys. 1–14.

[49] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi
Qiao, and Sriram Rao. 2018. Towards a Learning Optimizer for Shared Clouds.
PVLDB 12, 3 (nov 2018), 210–222.

[50] Bohan Zhang, Dana Van Aken, Justin Wang, Tao Dai, Shuli Jiang, Jacky Lao,
Siyuan Sheng, Andrew Pavlo, and Geoffrey J. Gordon. 2018. A Demonstration of
the OtterTune Automatic Database Management System Tuning Service. PVLDB
11, 12 (2018), 1910–1913.

[51] Wangda Zhang, Matteo Interlandi, Paul Mineiro, Shi Qiao, Nasim Ghazanfari,
Karlen Lie, Marc Friedman, Rafah Hosn, Hiren Patel, and Alekh Jindal. 2022.
Deploying a Steered Query Optimizer in Production at Microsoft. In SIGMOD.
2299–2311.

[52] Yiwen Zhu, Matteo Interlandi, Abhishek Roy, Krishnadhan Das, Hiren Patel,
Malay Bag, Hitesh Sharma, and Alekh Jindal. 2021. Phoebe: A Learning-Based
Checkpoint Optimizer. PVLDB 14, 11 (jul 2021), 2505–2518. https://doi.org/10.
14778/3476249.3476298

[53] Yiwen Zhu, Subru Krishnan, Konstantinos Karanasos, Isha Tarte, Conor Power,
Abhishek Modi, Manoj Kumar, Deli Zhang, Kartheek Muthyala, Nick Jurgens,
et al. 2021. KEA: Tuning an Exabyte-Scale Data Infrastructure. In SIGMOD.
2667–2680.

[54] Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy Lohman, Adam Storm, Chris-
tian Garcia-Arellano, and Scott Fadden. 2004. DB2 Design Advisor: Integrated
Automatic Physical Database Design. In VLDB ’04. 1087–1097.

224

https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-overview
https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/apache-spark-overview
https://docs.microsoft.com/en-us/azure/data-explorer/
https://docs.microsoft.com/en-us/azure/data-explorer/
https://azure.microsoft.com/en-us/services/hdinsight/
https://azure.microsoft.com/en-us/services/hdinsight/
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/products/azure-sql/database
https://azure.microsoft.com/en-us/products/azure-sql/database
https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/overview-architecture
https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/overview-architecture
https://www.microsoft.com/en-us/research/group/gray-systems-lab/
https://www.microsoft.com/en-us/research/group/gray-systems-lab/
https://microsoft.github.io/SynapseML/
https://doi.org/10.1145/3394486.3403205
https://substrait.io/
https://doi.org/doi:10.14778/3551793.3551860
https://substrait.io/
https://doi.org/10.14778/3476249.3476298
https://doi.org/10.14778/3476249.3476298

	Abstract
	1 Introduction
	2 Our Viewpoints
	3 The Vantage Point
	4 Challenges and Progress
	4.1 Cloud Infrastructure Layer
	4.2 Query Engine Layer
	4.3 Service Layer

	5 Lessons Learned
	6 Future Directions
	7 Conclusion and Call to Action
	References



